Journal of Organometallic Chemistry, 136 (1977) 289–299 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

UMSETZUNG VON METALL- UND METALLOIDVERBINDUNGEN MIT MEHRFUNKTIONELLEN MOLEKÜLEN

X *. N-ALKYL-N-ω-CYANOALKYL-AMINO(DIORGANYL)BORANE

ANTON MELLER *, WALTER MARINGGELE und FRANZ J. HIRNINGER [·] Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4 (B.R.D.) (Eingegangen den 6. April 1977)

Summary

N-Alkyl-N- ω -cyanoalkylamino(trimethyl)silanes react with halogendi-(organyl)-boranes and chloro-bis(dimethylamino)borane resp., with formation of halogentrimethylsilane and the monomeric title compounds. The compounds were characterized analytically and spectroscopically (NMR: ¹H, ¹¹B; MS; IR)

Zusammenfassung

N-Alkyl-ω-cyanoalkyl-amino(trimethyl)silane reagieren mit Halogendiorganylboranen bzw. Chlor-bis(dimethylamino)boran unter Bildung von Halogentrimethylsilan und den monomeren Titelverbindungen. Die Verbindungen wurden analytisch und spektroskopisch (NMR: ¹H, ¹¹B; MS; IR) charakterisiert.

Einleitung

Über Cyanoborane ist in der Literatur bereits berichtet worden. Meist liegen diese Verbindungen jedoch nicht in monomerer Form vor [1-5]. Bei der Polymerisation sind zwei Arten zu unterscheiden, einmal die Bildung von Koordinationspolymeren, wie sie bei Molekülen des Typs X₂BCN beobachtet wird, wobei die CN Dreifachbindung erhalten bleibt. Die Valenzfrequenz brückenartig gebundener CN Gruppen liegt dann um 2300 cm⁻¹. Eine weitere Möglichkeit zur Polymerisation ergibt sich durch Verminderung der Bindungsordnung der (CN)-Bindung unter Bildung von Ringen oder Ketten. Bei sterischer Hinderung, etwa durch grosse Organylreste [6], bleibt der Polymerisationsgrad gering.

Über monomere Cyanoborane ist bisher wenig bekannt [1,7,8]. Es wurde z.B. festgestellt, dass für die Bildung monomerer Cyanoborane eine Verringerung der

^{*} IX. Mitl. siehe Ref. 30.

Lewis-Acidität des Bor-Atoms durch geeignete Substituenten, zum Beispiel Dialkylaminogruppen, notwendig ist [1].

Über Borane, bei denen die Cyanogruppe nicht direkt an das Boratom, sondern an einen organischen Rest gebunden ist, wie dies z.B. bei N-Alkyl-N- ω -cyanoalkylamino(dimethyl)boranen der Fall ist, ist bisher nichts bekannt. Da auch hier ähnlich der B-Cyanoverbindungen starke Neigung zur Polymerisation angenommen werden musste, wurden zur Darstellung derartiger Verbindungen Moleküle eingesetzt, die neben der Nitrilgruppe eine sekundäre Aminogruppe enthalten.

Es ist bekannt, dass die Si-N Bindung durch Halogenborane unter milden Bedingungen gespalten wird [9-12].

In der vorliegenden Arbeit werden Umsetzungen von N-Alkyl-N-cyanoalkylaminotrimethylsilanen mit Boranen untersucht mit dem Ziel, nach dieser Methode monomere N-Alkyl-N-cyanoalkylaminoborane herzustellen.

Ergebnisse und Diskussion

Setzt man N-Alkyl-N-cyanoalkyltrimethylsilane mit Bromodimethylboran um, so verläuft die Reaktion unter Abspaltung von Bromtrimethylsilan nach Gl. 1.

Die so hergestellten N-Alkyl-N-cyanoalkylaminodimethylborane sind in Tab. 1 zusammengefasst.

Das IR-Spektrum von IV zeigt neben der C=N Bindung für die monomere Form auch eine schwache C=N-Doppelbindungsbande bei 1655 cm⁻¹. Man kann daraus schliessen, dass IV bei Normalbedingungen in geringem Masse assoziiert vorliegt. Die Assoziation erfolgt über eine Einschiebung der Nitrilgruppe in eine B-C Bindung nach Gl. 2.

Auch mit anderen Halogendiorganylboranen erhält man die erwarteten N-alkyl-N-cyanoalkylamino(diorganyl)borane. So reagiert das N-Trimethylsilyl-N-me-

TABELLE 1 N-ALKYL-N-C	YANOALKYLA	AMINOBORANI	E DES TYPS H_{3C} B-N R H_{3C} (CH ₂) _n CN
Verbindung	R	n	
I	CH ₂ CN	1	
11	CH3	1	
ш	CH ₃	2	
IV	n-C4H9	1	

thyl-amino(3)-propionitril mit Chlor-di-n-butylboran zu V nach Gl. 3.

Auch das Chlor(bis)dimethylaminoboran kann man so mit N-Alkyl-N-cyanoalkylaminotrimethylsilan umsetzen, etwa das N-Methyl-N-trimethylsilylaminoacetonitril mit $ClB[N(CH_3)_2]$ nach Gl. 4 zur Verbindung VI. Bei der Reaktion

von N-t-Butyl-N-trimethylsilylcyanamid mit Bis(dimethylamino)chlorboran erhält man jedoch ein Gemisch von zwei Verbindungen VIIa und VIIb, welche NMR- und massenspektrometrisch nachgewiesen, aber destillativ wegen der Ähnlichkeit der Siedepunkte nicht getrennt werden können (Gl. 5).

N-Trimethylsilyliminodiacetonitril reagiert mit Chlor(bis)dimethylaminoboran zu VIII nach Gl. 6.

Diese Verbindung scheint jedoch bei Normalbedingungen teilweise assoziiert vorzuliegen. Das IR-Spektrum zeigt neben der C=N Dreifachbindung eine C=N-Doppelbindung bei 1650 cm⁻¹. Die Assoziation erfolgt demnach über die Ein-

TABELLE 2		
AUSBEUTE UND	SIEDEPUNKTE DER	VERBINDUNGEN I-VIII

	Verbindung	Ausbeute (%)	Sdp. (°C/mmHg)
I	(CH ₃) ₂ BN(CH ₂ CN) ₂	78	84/0.05
11	(CH ₃) ₂ BNCH ₃ CH ₂ CN	87	67/25
III	(CH ₃) ₂ BNCH ₃ (CH ₂) ₂ CN	80	65/4
1V	(CH ₃) ₂ BN-n-C ₄ H ₉ CH ₂ CN	60	104/22
v	(n-C ₄ H ₉) ₂ BNCH ₃ (CH ₂) ₂ CN	80	80/10 ⁻³
VI	[CH ₃) ₂ N] ₂ BNCH ₃ CH ₂ CN	30	67/10 ⁻³
VII	[(CH ₃) ₂ N] ₂ BN-t-C ₄ H ₉ CN	50	83/10 ⁻³
VIII	[CH ₃) ₂ N] ₂ BN(CH ₂ CN) ₂	55	50/10 ⁻³
			79 (Schmp.)

schiebung einer Nitrilgruppe in eine der B-N CH_3 Bindungen, etwa nach Gl. 7. CH₃

Das Massenspektrum für VIII zeigt den Molekülpeak für die monomere Form. Dies lässt darauf schliessen, dass VIII in der Dampfphase nur monomer vorliegt. Solche reversible Einschlebungen von Nitrilgruppen haben wir schon früher beobachtet [13].

Ausbeute und Siedepunkte der Verbindungen I-VIII sind im Tabelle 2 zusammengestellt.

Die als Ausgangsprodukte verwendeten Cyanoalkylaminoalkyltrimethylsilane sind ebenfalls bisher nicht in der Literatur beschrieben worden. Sie wurden hergestellt durch Umsetzung der entsprechenden Aminonitrile mit Trimethylchlorsilan unter Zusatz von Triäthylamin als HCl-Fänger (Gl. 8).

(IIX - XIII)

TABELLE 3

 $N-ALEYL-N-CYANOALEYLAMINOTRIMETHYLSILANE DES TYPS (CH_3)_3Si-N-(CH_2)_nCN$

				n	
Verbindung	R	n	Sdp. (°C/mmHg)	Ausdeute (%)	
IX	CH ₂ CN	1	105/0.1	90	
х	CH3	1	79/10	80	
XI	CH ₃	2	8687/0.3	90	
XII	n-C4Ho	1	79-82/10	70	
-XIII	t-C4H9	0	35-37/10	70	

Einen Überblick über diese Verbindungen, die aus Kostengründen IR-, NMRspektroskopisch und massenspektrometrisch, nicht aber analytisch untersucht wurden, gibt Tabelle 3.

Spektroskopische Untersuchungen (Tabelle 4)

Die ¹¹B-NMR-Spektren zeigen, dass alle dargestellten Cyanoalkylborane in monomerer Form vorliegen. Die δ Werte für II—V, in denen nur eine B—N Bindung vorliegt, liegen zwischen —45 und —47 ppm. Nur für I liegt der Wert bei —30.87 ppm *. Die Lage des Signals bei höherem Feld im Vergleich zu II—V könnte durch die zweite Cyanogruppe im Molekül begründet sein. Entsprechend zeigen die Verbindungen VI—VIII, in denen drei Aminoborangruppierungen vorliegen, Werte zwischen —21 und —29 ppm, vergleiche hierzu [14]. Durch den

TABELLE 4

CHEMISCHE VERSCHIEBUNGEN $\delta(^{1}H)$ UND $\delta(^{1}B)$ DER DARGESTELLTEN VERBINDUNGEN ^a

Verbin- dung	δ(¹ H) (ppm)	δ(¹¹ B) (ppm)	Verbin- dung	δ(¹ H) (ppm)	δ(¹¹ B) (ppm)
I	I $B(CH_3)_2 - 0.48(s)$ CH_2CN II $-N - 4.16(s)$ CH_2CN Int. I : II = 3 : 2	—30.87 (br)	VII	$(Me_3C)_n I - 1.27 (s)$ (n = 1, 2) II - 1.31(s) $[Me_2N]_n B III - 2.64(s)$ (n = 1, 2) IV - 2.66(s) Int. I : II : III : IV = 4 : 8 : 5 : 5	-21.99
II	I $B(CH_3)_2 - 0.38$ II $N-CH_3 - 2.88$ III $-N-CH_2CN - 3.89$ Int. I : II : III = 6 : 3 : 2	-47.36	VIII	I $B[N(CH_3)_2] - 2.58(s)$ I $-N$ $-3.86(s)$ II $-N$ CH_2CN Int I $+N - 3 + 1$	-28.54
ш	I $B(CH_3)_2 - 0.28(s)$ II $N-CH_2 - 2.40(t)$ III $N-CH_3 - 2.70(s)$ IV $-CH_2CN - 3.29(t)$	-46.51	IX	I Si(CH ₃) ₃ $-$ 0.21(s) II $-$ N(CH ₂ CN) ₂ $-$ 3.80(s) Int. I : II = 9 : 4	_
IV	Int. I : II : III : IV = $6 : 2 : 3 : 2$ I B(CH ₃) ₂ - 0.39(s) II n-C ₄ H ₉ - 0.78 bis - 1.58(br) III - CH ₂ CN - 3.95(s)	-45.78	x	I Si(CH ₃) ₃ $- 0.012(s)$ II N-CH ₃ $- 2.54(s)$ III -CH ₂ CN $- 3.63(s)$ Int. I : II : III = 9 : 3 : 2	_
v	Int. I : II : III = 6 : 9 : 2 I $B(n-C_4H_9)_2 - 0.64 \text{ bis} - 1.53$ II $N-CH_2 - 2.49(t)$ III $N-CH_3 - 2.79(s)$ IV $-CH_2CN - 3.38(t)$ IV $-CH_2CN - 3.8(t)$	(br) —47.78	XI	I Si(CH ₃) ₃ $-$ 0.08(s) II N-CH ₃ $-$ 2.46(s) III N-CH ₂ $-$ 2.41(t) IV CH ₂ CN $-$ 3.03(t) Int. I : II : III : IV = 9 : 3 : 2 : 2	
VI	$I = B\left(N \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix} - 2.542(s), H \end{pmatrix}$	28.12	XII	I Si(CH ₃) ₃ $- 0.02(s)$ II n-C ₄ H ₉ $- 0.67$ bis $- 1.57(br)$ III CH ₂ CN $- 3.55(s)$ Int. I : II : III = 9 : 9 : 2	
	Satellitenbande bei2.51(s) II NCH ₃ 2.62(s), Satellitenbande bei2.64(s) III CH ₂ CN 3.71(s) Int. I : II : III = 12 : 3 : 2		хпі	I Si(CH ₃) ₃ $-$ 0.18(s) II C(CH ₃) ₃ $-$ 1.25(s) Int. I : II = 1 : 1	

^a Alle NMR-Messungen wurden in etwa 30% iger Lösung in Methylenchlorid durchgeführt. Als Standardsubstanzen wurden TMS (intern) und BF₃ $O(C_2H_5)_2$ (extern) verwendet.

* Austauschprozess?

partiellen Doppelbindungscharakter der B-N Bindung [15] ergibt sich eine Rotationsbarriere von 10-15 kcal Mol⁻¹. So treten im Fall asymmetrisch substituierter Verbindungen *cis-trans* Isomere auf [16-20]. Es zeigen sich bei Verbindung VI Satellitenbanden im Protonenresonanzspektrum des B[N(CH₃)₂]₂ Signals bei δ -2.51 ppm und beim Signal für die CH₂CN-Gruppe bei δ -2.64 ppm. Für die übrigen Verbindungen wurde jedoch eine solche Aufspaltung nicht beobachtet. Im Falle der Verbindungen III und V werden die beiden Methylengruppen durch H-H Kopplung mit der N-CH₃ Gruppe in Tripletts aufgespalten. Dies wird auch bei der beiden Verbindungen gemeinsamen Ausgangssubstanz XI beobachtet.

Wie bereits erwähnt, besteht VII aus zwei Verbindungen, VIIa und VIIb. Entsprechend beobachtet man im ¹H-NMR-Spektrum je zwei Signale für die t-Butylgruppen und B-N(CH₃)₂-Gruppen. Entsprechend der Intensitätsverteilung liegen beide Formen im Verhältnis in etwa gleicher Menge vor.

Beschreibung der Versuche

Darstellung der Ausgangsverbindungen

 Me_2BBr und $(n-C_4H_9)_2BCl$ wurden durch Umsetzung von Halogenboran mit den entsprechenden Tetraorganylstannanen dargestellt [21,22].

Bis(dimethylamino)chlorboran wurde aus Tris(dimethylamino)boran und BCl_3 erhalten [27–29].

Tris-dimethylaminoboran wurde durch Reaktion von Dimethylamin mit Trichlorboran in Gegenwart von Triäthylamin als HCl-Fänger bereitet [23–26].

Alle Reaktionen wurden in getrockneten Lösungsmitteln unter N_2 -Atmosphäre durchgeführt. Die Apparaturen wurden durch mehrstündiges Anheizen in Trockenschrank bei 130°C und anschliessendes Erkaltenlassen im N_2 -Strom getrocknet.

Darstellung von I-V

0.1 Mol des N-Alkyl-N- ω -cyanoalkylaminotrimethylsilans wurden in 50 ml n-Hexan gelöst und bei Raumtemperatur 0.1 Mol des Halogendi(organyl)borans, gelöst in 20 ml n-Hexan langsam zugetropft. Die Reaktion war schach exotherm. Nach Beendigung des Zutropfens wurde 2 Std. bei Raumtemperatur gerührt und anschliessend das Lösungsmittel und Brom- bzw. Chlortrimethylsilan am Rotationsverdampfer abgezogen. Es wurden Flüssigkeiten erhalten, die unter vermindertem Druck destilliert wurden.

Darstellung von VI

Zu 0.1 Mol N-Trimethylsilyl-N-methylaminoacetonitril wurden 0.1 Mol Chlor-(bis)dimethylaminoboran getropft. Die Reaktion war schwach exotherm. Es bildete sich ein flüssiges und ein festes Produkt. Nach 2 Std. Rühren bei 20°C wurde Me₃SiCl am Rotationsverdampfer abgezogen. Die Flüssigkeit wurde abdekantiert, destilliert und dabei VI erhalten. Der feste Anteil polymerisierte beim Versuch der Sublimation im Hochvakuum bei etwa 160°C explosionsartig.

Darstellung von VII und VIII

Zu 0.1 Mol des N-Alkyl-N- ω -cyanoalkylaminotrimethylsilans wurden 0.1

Verbin- dung	Bruttoformel	Mol Gew.	Analytische Daten Gef. (Ber.) (%)		
			C	н	N
I	C ₆ H ₁₀ BN ₃	134.8	53.03 (53.41)	7.70 (7.42)	31.58 (31.15)
п	$C_5H_{11}BN_2$	109.8	53.78 (54.64)	10.04 (10.02)	27.02 (25.50)
ш	C ₆ H ₁₃ BN ₂	123.8	57.47 (58.15)	10.22 (10.50)	22.91 (22.62)
IV	C ₈ H ₁₇ BN ₂	151.8	60.16 (63.24)	11.07 (11.20)	17.86 (18.44)
v	C12H25BN2	207.8	69.88 (69.30)	11.99 (12.03)	14.95 (13.47)
VI	C7H17BN5	181.8	48.96 (50.06)	10.23 (10.13)	31.35 (31.37)
VII	C ₉ H ₂₁ BN ₅	209.8	52.70 (55.16)	9.79 (10.72)	27.55 (28.60)
VIII	C ₈ H ₁₆ BN ₅	192.8	45.45 (49.78)	8.18 (8.30)	35.38 (36.31)

ANALYTISCHE DATEN UND MOLEKULARGEWICHTE DER VERBINDUNGEN I-VIII	

Mol Chlor(bis)dimethylaminboran getropft. Die Reaktion war schwach exotherm. Nach Beendigung des Zutropfens wurden 2 Std. bei Raumtemperatur gerührt und anschliessend am Rotationsverdampfer des entstandene Chlortrimethylsilan abgezogen. Im Falle von VII verblieb eine Flüssigkeit, welche unter vermindertem Druck destilliert wurde. VIII fiel als brauner Feststoff an und wurde durch Sublimation bei 50° C/ 10^{-1} mmHg sowie durch Umkristallisieren aus CCl₄ gereinigt und schliesslich als kristalline, farblose Substanz vom Schmp. 79°C erhalten.

Darstellung der N-Alkyl-N-cyanoalkylaminotrimethylsilane IX-XIII

0.5 Mol des entsprechenden N-Alkylaminoaceto- bzw. -propionitrils wurden zusammen mit 0.75 Mol N(C_2H_5)₃ in 500 ml CCl₄ vorgelegt und 0.75 Mol Chlortrimethylsilan zugetropft. Nach Beendigung des Zutropfens wurde 12 Std. am Rückfluss gekocht, anschliessend in einer Druckfilternutsche unter N₂ von ausgefallenem Triäthylammoniumchlorid abgedrückt und am Rotationsverdampfer das Lösungsmittel abgedampft. Es verblieben Flüssigkeiten, die durch Destillation unter vermindertem Druck gereinigt wurden.

Analysen

TABELLE 5

Die C, H und N-Bestimmungen wurden als Verbrennungsanalysen (Mikro-Pregl bzw. Mikro-Dumas) durchgeführt (Mikroanalytisches Laboratorium Beller, Göttingen). Die analytische Daten der Verbindungen I—XIII sind in den Tabellen 5 und 6 zusammengefasst.

TABELLE 6

ANALYTISCHE DATEN UND MOLEKULARGEWICHTE DER VERBINDUNGEN IX-XIII

Verbin-	Bruttoformel	Mol	Analytische Daten Gef. (Ber.) (%)		
dung		Gew.	с	н	
IX	C7H13N3Si	167.1	49,92 (50,26)	8.04 (7.78)	
x	C ₆ H ₁₄ N ₂ Si	142.1	50.85 (50.66)	10.39 (9.85)	
XI	C7H16N2Si	156.1	54.44 (53.81)	11.02 (10.24)	
XII	CoH20N2Si	184.1	58.35 (58.66)	11.28 (10.86)	
XIII	$C_7H_{18}N_2Si$	158.1	56.89 (53.13)	11.19 (11.38)	

TABELLE 7

MASSEN- UND INFRAROTSPEKTREN DER VERBINDUNGEN I-XIII

Massenspektrum			Infrarotspektrum	
m/e	Int.	Zuordnung	(cm ⁻)	
Verbine	dung I		· · · ·	
135	34	M*	2970ss, 2250m, 1455ss, 1430ss, 1350s,	
120	81	$(M - CH_3)^*$	1315ss, 1235ss, 1195ss, 1180ss, 1130vw,	
95	41	$(M - CH_2CN)^+$	1050m, 950s, 930s, 900s, 840w, 700w	
94	68	$[M - B(CH_3)_2]^{\dagger}$		
81	11	$[M-2 \text{ HCN]}^{\dagger}$		
69	37	$[M - CH_2CN - CN]$		
67	45	C ₃ H ₃ N ₂		
52	33	C_2N_2		
42	100	C ₂ H ₄ N		
41	57	B(CH ₃) ₂		
sowie w	eitere Bruchst	ücke		
Verbind	iung II			
110	25	M^+	2925s, 2240m, 1485ss, 1450s, 1405ss,	
95	100	$(M - CH_3)^+$	1340m, 1310ss, 1245s, 1200ss, 1125ss,	
68	11	$(M - HCN)^+$	1005m, 945m, 930s, 895w, 675w	
54	17	$C_2H_2N_2$		
42	25	C ₂ H ₄ N		
41	19	B(CH ₃) ₂		
sowie w	eitere Bruchsti	ücke		
Verbing	iung III			
124	8	M^+	2925s, 2800m, 2240m, 1485s, 1445s,	
109	90	$(M - CH_3)^+$	1400ss, 1360m, 1305ss, 1240m, 1185s,	
84	100	$(M - CH_2CN)^*$	1120s, 1095w, 1035m, 985m, 925m, 875w,	
83	45	$[M - B(CH_3)_2]^{\dagger}$	830m, 750w	
66	59	C ₃ H ₅ BN		
56	32	C ₃ H ₆ N		
42	50	C_2H_4N		
41	68	B(CH ₃) ₂		
40	36 aitana Revalati	CH ₂ CN		
ZOMIC M	eitere bruchste	ICKE		
Verbind	lung IV			
152	4	M [*]	2970s, 2935s, 2880m, 2250w, 1655m,	
137	26	$(M - CH_3)$	1450ss, 1430ss, 1380m, 1310ss, 1250s,	
125	14	(M - HCN)	1255ss, 1180ss, 1130m, 1050w, 990w,	
109	19	$(M - CH_3CH_2CH_2)^+$	945m, 930m, 900m, 840w, 735w	
93	100	$(M - C_{4H_{9}})$		
57	74	C.U.		
56	37	C.H.		
43	52	C ₄ Hg		
40	92	C3H7		
41	64	B(CHa)a		
sowie w	eitere Bruchsti	icke		
Varbind	ung V			
202 202	10	317*	2085cc 2035cc 2880cc 2860cc	
168	24	$I_{M} = CH_{0}CNT$	2250m 1610m 1425e 1465e	
166	14	$[M - CH_2 - HCN]^+$	1455s. 1405ss. 1375m 1360m	
151	95	$IM - C_A H_0 I^+$	1350w. 1305m. 1270w. 1245s.	
194	17	$M - C_4 H_2 - HCN1^+$	1175m, 1120s, 1080w, 1045m	
112	34	$IM - CH_0 CN - C_4 H_0^{1+}$	1030m 990w 945vw 885vw	
109	17	$M - C_{4}H_{0} - HCN$	850w	
		- CH ₃] ⁺		
95	100	$[M - C_4 H_9 - C_4 H_8]^+$		

TABELLE 7 (Fortsetzung)

Massenspektrum			Infrarotspektrum (cm ⁻¹)		
m/e	Int.	Zuordnung			
57	22	C4H9			
56	22	C ₄ H ₈			
sowie we	eitere Bruchst	ücke			
Verbind	ung VI				
168	20	M	2995s, 2880ss, 2790ss, 2238w,		
153	3	$[M - CH_3]^+$	1510ss, 1480s, 1450ss, 1388ss,		
143	60	B[N(CH ₃) ₂] ₃	1345m, 1320m, 1235ss, 1215ss,		
124	20	$[M - N(CH_3)_2]$	1065c 1035w 965w 910m		
sowie we	ou eitere bruchsti		870m, 690vw, 665w, 645w		
50000					
Verbind	ung VII				
VIIa					
196	75	M^+	2970ss, 2930ss, 2870ss, 2800s,		
181	100	$(M_1 - CH_3)^*$	2200ss, 1530ss, 1455ss, 1400ss,		
152	35	$[M_1 - N(CH_3)_2]$	1365ss, 1345s, 1220ss, 1190ss,		
139	40	$[M_1 - C(CH_3)_3]^*$	1135ss, 1080ss, 1065ss, 1080m, 070m 040m 895m 845m 800m 725m 610s		
125	75	$[M_1 - C_4 H_8 - C_{13}]$	310mi 340wi 830wi 840wi 800wi 170wi 9100		
VIB					
249	45	M_2^*			
234	60	$[M_2 - CH_3]^{\dagger}$			
212	20	$[M_2 - RCN]$			
110					
weiters f	ür VIIc und V				
109	15	C5H9BN2			
99	80	$C_{12}R_{12}BN_2$			
94	15	CalleBNa			
83	18	CaHoBN			
57	30	C ₄ H ₉			
26	20	C4Hg			
44	40	C ₂ H ₆ N			
sowie we	eitere Bruchst	ücke			
Verbind	ung VIII				
193	45	M^+	2995s, 2880ss, 2820s, 2790ss,		
167	6	$[M - CN]^{+}$	2240w, 1660m, 1595m, 1495s,		
153	32	$[M - CH_2CN]^*$	1470s, 1455ss, 1440s, 1430s,		
149	19	$[M - N(CH_3)_2]^*$	1410s, 1395ss, 1360w, 1330m,		
124	20	$[M - CH_2CN - NCH_3]^2$	1255m, $1220ss$, $1200s$, $1175ss$, 1145m, $1130s$, $1100m$, $1050s$,		
99	21	-N(CH ₃)3)2	980m, 955m, 915m, 885s, 850m.		
44	70	N(CH ₃)	760w, 720w, 690w, 665m		
42	85	C ₂ H ₄ N			
sowie we	eitere Bruchst	ücke			
Verbind	une IX				
167	77	M^+	2960m, 2900m, 2238m, 1430s, 1355m,		
152	100	$[M - CH_3]^*$	1330m, 1255ss, 1140ss, 1100ss, 920ss,		
141	9	$[M - CN]^+$	845ss, 755s, 690m, 640m		
137	20	$[M - 2 CH_3]^+$			
84	55	C4H8N2			
73	59	C ₃ H ₉ Si	•		
43	37	CH3SI C-H-N	_		
*4 sourie un	ov eitere Bruchet	V311411 ücke			
20 WIG W			-		

Massenspektrum			Infrarotspektrum	
m/e	Int. Zuordnung		(cm ⁻⁺)	
	 ing X			
	·		2960ss, 2895s, 2810s, 2238m, 1470m,	
			1445m, 1425m, 1340m, 1315m, 1250ss,	
			1200s, 1145ss, 1020ss, 940ss, 845ss,	
			750s, 685m, 615w	
Verbindu	ing XI			
	_		2960ss, 2900m, 2880m, 2800m, 2245m,	
			1470w, 1450m, 1420m, 1365m, 1345m,	
			1290m, 1250ss, 1200s, 1140s, 1045s,	
			990ss, 935vw, 885ss, 840ss, 760s,	
			745s, 680m, 600vw	
Verbind	ing XII			
184	3	M^+	2985s, 2900m, 2870w, 2240ss, 1460w,	
141	18	$[M - C_3 H_7]^*$	1390w, 1365m, 1255s, 1230m, 1185m,	
127	9	$[M - C_4 H_9]^*$	870s, 840ss, 755m	
126	9	$[M - C_4 H_{10}]^+$		
84	77	C4H8N2		
73	36	$C_3H_5N_2$		
57	25	C ₄ H ₉		
56	27	C ₄ H ₈		
43	59	C ₃ H ₇		
42	78	C ₃ H ₆		
sowie we	itere Bruchsti	icke		
Verbindu	ing XIII		•	
170	7	M^{+}	2960ss, 2930ss, 2885s, 2860s, 2230w,	
155	100	$[M - CH_3]^+$	1465m, 1425m, 1375m, 1335w, 1280w,	
99	76	$M - CH_3 - C_4H_3$	1520ss, 1165m, 1140s, 1100w, 925m,	
73	63	C ₃ H ₉ Si ↔	840ss, 750m, 685m, 615w	
Von I II	hund V wurd	en auch Feldionisationssnek	tren aufgenommen	
		en anen i erarombanditsipen	and an	

TABELLE 7 (Fortsetzung)

Die Aufnahme der Massenspektren erfolgte bei 70 eV. In einzelnen Fällen wurde der Molekularpeak zusätzlich durch Feldionisationsmessungen festgestellt. Die Massen- und Infrarotspektren der Verbindungen I—XIII sind im Tabelle 7 zusammengefasst.

Dank

Für die Förderung der Untersuchungen danken wir den Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Literatur

- 1 E. Bessler und J. Goubeau, Z. Anorg. Allg. Chem., 352 (1967) 67.
- 2 E.C. Evers, W.O. Freitag, W.A. Kriner und A.G. MacDiarmid, J. Amer. Chem. Soc., 81 (1959) 5106.
- 3 B.M. Mikhailov und Yu.N. Bubnov, Dokl. Akad. Nauk SSSR, 127 (1959) 571.
- 4 B.F. Spielvogel, R.F. Bratton und C.G. Moreland, J. Amer. Chem. Soc., 94 (1972) 8597.
- 5 M.F. Lappert und H. Pyszora, Adv. Inorg. Chem. Radiochem., 9 (1966) 142.
- 6 M.F. Lappert, Developments in Inorganic Polymers Chemistry, London, 1962, p.31.
- 7 V. Gutmann, E. Schaschel und A. Meller, Monatsh. Chem., 95 (1964) 1188.
- 8 M. Chaigneau, C.R. Acad. Sci. Paris, Sér. C, 239 (1954) 1220.